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We show that chirped metal-dielectric waveguide arrays with focusing cubic nonlinearity can support plasmonic
lattice solitons that undergo self-deflection in the transverse plane. Such lattice solitons are deeply subwavelength
self-sustained excitations, although they cover several periods of the array. Upon propagation, the excitations ac-
celerate in the transverse plane and follow trajectories curved in the direction in which the separation between
neighboring metallic layers decreases, a phenomenon that yields considerable deflection angles. The deflection
angle can be controlled by varying the array chirp. We also reveal the existence of surface modes at the boundary
of truncated plasmonic chirped array that form even in the absence of nonlinearity. © 2015 Optical Society of
America
OCIS codes: (240.6680) Surface plasmons; (310.6628) Subwavelength structures, nanostructures.
http://dx.doi.org/10.1364/OL.40.000898

One of the central goals of current nano-optics is the elu-
cidation of strategies that enable engineering and control
of the propagation of light in strongly localized waveguid-
ing structures. Frequently, such strategies rely on peri-
odic or aperiodic waveguide arrays, since the coupling
rate between adjacent waveguides in such structures,
which determines the rate at which light expands across
the arrays, can be engineered (for recent reviews, see [1–
3] and references therein). The majority of earlier works
on light propagation in periodic media addressed dielec-
tric structures, but there is a growing current interest in
metal-dielectric waveguide arrays. Such interest
is motivated by the properties of the surface plasmon ex-
citations supported by metal-dielectric materials, which
afford the light concentration and guidance at subwave-
length scales envisaged for miniaturized devices [4–16].
For example, plasmonic waveguide arrays have been
used to focus incident wide waves into a single slit [4],
and to observe plasmonic Bloch oscillations [4–6] and
Zener tunneling [8]. More recently, plasmonic routing
was reported in aperiodic graphene arrays [9]. If the plas-
monic periodic nanostructure exhibits a nonlinear optical
response, the formation of a rich family of self-sustained
subwavelength excitations becomes possible [17–28].
Nevertheless, such excitations are usually strongly
pinned to the particular dielectric layer that exhibits a
nonlinear response, while many potential applications
need controllable routing of light across the array.
In this Letter, we address the propagation of subwave-

length light beams in one-dimensional arrays of metal-
dielectric layers, where the separation between the
adjacent metallic layers changes linearly across the ar-
ray. The linear chirp may lead to large transverse drifts
of the light beams propagating inside the structures. In
addition, if the dielectric host medium exhibits a focusing
cubic (Kerr) nonlinearity, one can achieve formation of
self-deflecting plasmonic lattice solitons that maintain

their width and structure upon propagation even in the
case of considerable self-deflection angles. We also con-
sider truncated chirped arrays to show that the bounda-
ries of such arrays act as attractors for light and thus
allow formation of surface modes even in the absence
of nonlinearity.

The chirped metal-dielectric array is sketched in Fig. 1.
The structure contains many periods, hence initially, no

Fig. 1. Schematic representation of a chirped subwavelength
array consisting of dielectric layers (white regions) separated
by metallic layers (blue regions) of width a. The separation
between centers of metallic layers n and n� 1 decreases
with layer index n linearly as dn;n�1 � d1;2 − �n − 1�δd, where
d1;2 � 40 nm. The dotted arrow indicates the propagation
and deflection direction of light in the structure.
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boundary effects are taken into account in the transverse
x direction. The structure involves closely spaced paral-
lel metallic (silver) nano-layers with identical widths
a � 20 nm and a relative dielectric permittivity εm �
−20 − 0.19i at the wavelength λ � 632 nm [29]. A chirp
is introduced into the structure by assuming that the sep-
aration between layers n and n� 1 decreases linearly
with a constant rate δd > 0, namely, dn;n�1 � d1;2−
δd�n − 1�, where n � 1; 2… and d1;2 � 40 nm. Such a
chirp induces asymmetric coupling between layers of
the structure and stimulates transverse beam displace-
ments. Metallic layers are embedded into nonlinear
dielectric host medium with relative permittivity εd �
�n0 � n2I�2, where n0 � 3.5 and n2 � 4 × 10−18 m2∕W
are linear and nonlinear refractive indices, and I is the
light intensity. Here we do not take into account nonlin-
earity of the metal, assuming it is small.
The propagation of a TM-polarized (i.e., only Ex; Ez;Hy

components of the electric and magnetic fields are
nonzero) light beam along the z-axis in the chirped
plasmonic array is governed by the reduced system of
Maxwell’s equations,
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where ε0 and μ0 are the vacuum permittivity and per-
meability, ω is the light frequency, and ε�x� is the relative
permittivity of the chirped array. The system of Eq. (1)
was solved with a finite-element method allowing inclu-
sion of nonlinear effects [30]. Throughout this Letter, the
input conditions for Eq. (1) were selected in the form
of superposition of linear eigenmodes of the individual
metallic layers, surrounded by a dielectric medium, with
a Gaussian envelope:

Ex�x�jz�0 � E0

X
n

�−1�nexn�x�e−�n−nc�2∕T2
; (2)

where the functions exn�x� describe the eigenmodes of
the individual metallic layers, nc determines the number
of the layer where excitation is centered, T is the width of
the envelope, and E0 is the input amplitude. Metallic
layer supports two types of SPP modes: one with sym-
metric Ex�x� field distribution and the other one having
anti-symmetric Ex�x� distribution [31]. We use only anti-
symmetric modes in (2), since they can be found even for
very small widths of the metallic layers. The factor �−1�n
guarantees that the excitation has staggered structure in
the neighboring layers. Such staggered phase structure
is necessary, since we will use focusing nonlinearity to
balance beam diffraction [19,21,22]. We set T � 2.5 and
nc � 10, so that initial excitation covers around 5 layers
(its width is approximately 140 nm for d1;2 � 40 nm
and δd � 0.6 nm) and is centered at the 10th layer
[see example in Fig. 5(d)]. Our main goal is to show that
for selected parameters of the structure, such beams can
undergo considerable self-deflection in the transverse
plane at the distances ∼3 μm, while maintaining their
width and internal structure and exhibiting minimal
attenuation.

Illustrative examples of the propagation dynamics are
shown in Fig. 2. To show the effect of self-deflection
induced by the lattice chirp, we initially ignored losses
in the metallic layers. Since the beam is deeply subwave-
length (width ≈140 nm), it undergoes considerable
diffraction in the linear case �E0 → 0� even for a very
short propagation distance [3 μm in Figs. 2(a)–2(c)]. The
diffraction pattern is strongly asymmetric due to the lat-
tice chirp, and the center of mass of the beam shifts in
the direction of decreasing separation between metallic
layers. The effect of the transverse self-deflection and
considerable bending of the propagation trajectory are
most apparent in Figs. 2(d)–2(f), where the input peak
amplitude of the electric field E0 � 5.2 × 109 V∕m was
selected such that the maximal nonlinear contribution
to the refractive index in the dielectric region amounts
to δn � 0.05. Strong diffraction of the beam is now nearly
completely arrested by the focusing nonlinearity, leading
to the formation of subwavelength plasmonic lattice
solitons that move across the array, conserving their inter-
nal structure and exhibiting acceleration in the transverse
plane. Such solitons still cover several metallic layers, and
their widths change only slightly upon propagation. Notice
that in complete contrast to previous works dealing with
solitons in plasmonic waveguide arrays [17–28] and their
transverse mobility [19], in our case no initial phase tilt is
required to set soliton in motion across the array. In other
words, the propagation trajectory of such states can be
controlled by adjusting the chirp rate of the plasmonic
structure.

The dependencies of the position of the output wave-
guide nout, where the soliton center is located at zout �
3 μm, and output propagation angle ϕout on the lattice

Fig. 2. Evolution dynamics in chirped subwavelength wave-
guide arrays in the linear (a)–(c) and nonlinear (d)–(f) regimes,
in the absence of metallic losses. The chirp rate is δd � 0.5 nm
(a),(d), 0.6 nm (b),(e), and 0.7 nm in (c),(f). The propagation
distance is 3 μm, while the width of the transverse window
is 2 μm.
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chirp rate δd are shown in Fig. 3. The output deflection
angle is approximately defined here as ϕout � arctan�δx∕
zout�, where δx is the transverse beam center displace-
ment acquired upon propagation. Notice that the actual
propagation angle defined by the inclination of the tan-
gential line to soliton center trajectory at z � zout is even
higher than ϕout. As Fig. 3 shows, both nout�δd�, ϕout�δd�
are monotonically growing functions, indicating that
larger chirps lead to stronger beam acceleration and
deflection. It should be emphasized that our results are
obtained using the direct numerical solution of Maxwell’s
equations, which thus allows large bending angles, in
contrast to the paraxial approximation operating with
small deflection angles [32].
A propagation distance of several microns is required

in order to achieve large deflection angles. At such dis-
tances, metallic losses may lead to notable decrease of
beam amplitude and also to diffraction [Figs. 4(a)–4(c)].
Nevertheless, we verified that the deflection angle is only
weakly affected by metallic losses, as shown in Fig. 3.
Moreover, in order to compensate metallic losses, one
may use active dielectric materials doped with suitable
ions. For example, if εd � �n0 � n2I�2 � iαd, a relatively
small gain of αd � 0.04 would be sufficient to nearly
compensate losses in silver layers (αm � −0.19 at
λ � 632 nm). The corresponding results are shown in
Figs. 4(d)–4(f). Note that in the structure considered here,
a large fraction of the energy carried by the light beam is
concentrated within the dielectric regions, and thus, the
corresponding gain has a stronger impact on the beam
evolution than losses inside the metallic layers [25].
Next we address arrays truncated in the direction

where separation between metallic layers decreases.
We aim at showing that the surface of such an array acts
as an attractor of light, while total internal reflection
at the interface with dielectric material in the point of
truncation may result in the formation of stationary sur-
face waves. Thus, we first found stationary surface
modes of the linear version of Eq. (1) in the form
�Ex�x; z�; Hy�x; z�� � �E�x�; H�x��eibz, where b is the
propagation constant determined by the parameters of
the structure. The profiles of such waves are depicted
in Fig. 5(a) for two chirp rates. Now we fix separation
d1;2 � 10 nm between near-surface layers and let it grow
linearly into the depth of the array. The intensity of the
surface wave is maximal within the near-surface metallic

layer. The localization degree of surface waves strongly
depends on the chirp rate, and their integral width rap-
idly decreases with δd [Fig. 5(b)]. Such surface waves ex-
ist due to the total internal reflection at the edge of the
chirped structures, therefore, their fundamental origin
differs from that of resonant Tamm states, which exist
due to Bragg reflection in the periodic structure [28].

Fig. 3. Output waveguide number (a) and output propagation
angle in degrees (b) versus chirp rate δd (in nanometers).
Empty circles show dependencies obtained in the absence of
metallic losses, while red dots correspond to the case with met-
allic losses. Total propagation distance is 3 μm.

Fig. 4. (a)–(c) Same as in Figs. 2(d)–2(f), but for nonzero
losses αm � −0.19 in the metal region. In (d)–(f), gain αd �
0.04 is added into dielectric layers. The propagation distance
is 3 μm, while the width of the transverse window is 2 μm.

Fig. 5. (a) Profiles of stationary surface modes for δd �
0.4 nm (black curve) and δd � 1.2 nm (red curve). (b) Surface
wave width versus δd. (c) Distance of the first collision with the
interface for a beam initially centered at the 25th metallic layer,
versus δd. (d) Input used for the excitation of self-deflecting sol-
itons in the bulk of array at δd � 0.6 nm.
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Importantly, we verified that the surface waves may be
excited by input beams displaced from the interface. This
is illustrated in Figs. 6(a) and 6(b), where we use the ini-
tial conditions (2) with small E0 and launch light into the
second and fifth waveguides (for convenience we now
enumerate waveguides from the interface) for a fixed
chirp δd � 1.2 nm. The excitation is most effective when
the beam enters the second waveguide, while for larger
displacements complex interference patterns occur due
to the interference between the light bending toward the
interface and the reflected waves. Deflection of the input
beam toward the interface is most pronounced when the
beam is launched far from the interface. As shown in
Figs. 6(d) and 6(e), in such case, a sequence of collisions
of subwavelength beams with the interface mediated by
completion of bending toward the interface and reflec-
tion at the interface takes place. Notice that collisions
with the interface can be observed even in the presence
of metallic losses [Figs. 6(c) and 6(f)]. The distance zc of
the first collision with the interface is a non-monotonic
function of the chirp δd [Fig. 5(c)]. Indeed, when δd → 0,
the array becomes periodic, and no deflection toward the
interface can occur, while for large δd values, the metal-
lic slabs become nearly decoupled and do not lead to
beam deflection. Collision length becomes minimal for
δd ∼ 0.4 nm.
Summarizing, we showed that light beams propagating

in suitable chirped plasmonic waveguide arrays may
undergo significant transverse deflections. When the
host material of the array exhibits a self-focusing nonlin-
earity, localized plasmonic solitons that accelerate in
the transverse plane may form, thus leaving the array

at controllable angles that increase with the chirp rate.
We also showed that truncated chirped plasmonic arrays
may support linear surface waves whose localization
depends on the chirp rate.

The work of C. Li and F. Ye is supported by the
National Natural Science Foundation of China, Grant
Nos. 11104181 and 61475101.
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(f) metallic losses are taken into account. The propagation dis-
tance is 10 μm, and the width of the transverse window is 3 μm.
Dashed lines: position of the interface.
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